MLFotoFun

MLFotoFun uses state of the art Machine Learning models that use Convolutional Neural Networks (CNNs) to classify photos taken with your camera or from your library using one of eight state of the art models. The classification includes the two most probable descriptive labels, as well as the probability associated with each label.

The eight models include: AgeNet (that classifies the age of the human subject); GenderNet (that classifies the gender of the subject); CNN Emotions (that classifies the emotion of the person); VisualSentiment (that classifies the human subject’s sentiment as positive or negative); Food101 (that classifies the food), Oxford102 (that classifies flowers); CarRecognition (that classifies the make of car); and GoogLeNetPlaces (that classifies the category of place in the image).

This app is for entertainment purposes only, and clearly demonstrates how bad such models can be, as well as the biases that they may contain, so no offence is intended with age or gender classification. It may however also surprise you in how far image recognition has come in the five years.

HRZones (Heart Rate Zones)

HR Zones is a simple to use heart rate training zone calculator. All you need to do is pick your date of birth, and it will calculate the five distinct heart rate zones for different types of training outcomes based on the percentage of your maximum heart rate.

I’ve included two models for the calculation of the maximum heart rate (there other much more sophisticated ways of doing this). The first, is simply 220 less your age (last birthday) for males, and 226 less you age for females. The second is essentially the same for males and females and is the same as the one for males above i.e. 220 – Age. This is the model used by Discovery Vitality for points.

It is very important to consult your general practitioner before undertaking any sort of exercise to ensure that you are medically fit to do so. This is a simple calculator, not a replacement for sound medical advice, so please treat your health with the caution and respect that it deserves.

Photo Classifier

Photo Classifier uses state of the art Machine Learning models that use Convolutional Neural Networks (CNNs) to classify photos taken with your camera or from your library. The classification includes both a descriptive label of the scene, as well as the probability associated with the label.

Six models have been included, and the app provides the output from each of the models in a fraction of a second each. You can see more detail on the top five predictions for each model, along with the probability of each prediction.

This is a simple but very powerful tool that demonstrates how far artificial intelligence and machine learning has come, especially the power of deep neural networks and specifically, convolutional neural networks. These models are all freely available from the internet under the licenses provided by the links below.

GoogLeNetPlaces: Creative Common License. More information available at http://places.csail.mit.edu

Resnet50: MIT License. More information available at https://github.com/fchollet/keras/blob/master/LICENSE

Inceptionv3: MIT License. More information available at https://github.com/fchollet/keras/blob/master/LICENSE

VGG16: Creative Commons Attribution 4.0 International(CC BY 4.0). More information available at https://creativecommons.org/licenses/by/4.0/

SqueezeNet: BSD License. More information available at https://github.com/DeepScale/SqueezeNet/blob/master/LICENSE

MobileNet: Apache License. Version 2.0 http://www.apache.org/licenses/LICENSE-2.0

StatsNoisy

This app calculates the probabilities of certain performance outcomes in investment management, based on some simplifying assumptions.

It calculates the probability of a single manage outperforming the benchmark over various time periods (from 1 month to 20 years), given a user selected manager skill level (given by the Information Ratio).

It also calculates the joint probability of none, or at least one manager, underperforming the benchmark. The user can select the skill level (equal for all the managers), the time period, and the number of managers.

It also calculates the probability of a single manager outperforming the benchmark by a certain alpha target (user selected) given a user selected tracking error, under the assumption that the manager has no skill i.e. an Information Ratio of 0.

It now includes probability density and mass functions, to help visualise the distributions of the outcomes i.e. the probabilities.

HIIT Counter for Apple TV (tvOS)

This app provides a timer for High Intensity Interval Training. It allows you to select the training time and resting time for each set, and allows you to select the sets per exercise. The timer provides both a visual countdown display of the time remaining, for each set, and an audible beeping for the last five seconds of each set. You therefore know when a set ends without even looking at the display, allowing you to focus on your training.

There are displays for the number of exercises, and sets, as well as the total time of exercising. There is a start and pause button, and you can change the training time and resting time while exercising, allowing you to mix and match exercise and resting times.

HIIT Counter for iPhone and iPad (iOS)

This app provides a timer for High Intensity Interval Training. It allows you to select the training time and resting time for each set, and allows you to select the sets per exercise. The timer provides both a visual countdown display of the time remaining, for each set, and an audible beeping for the last five seconds of each set. You therefore know when a set ends without even looking at the display, allowing you to focus on your training.

There are displays for the number of exercises, and sets, as well as the total time of exercising. There is a start and pause button, and you can change the training time and resting time while exercising, allowing you to mix and match exercise and resting times.

ML Camera for iPhone and iPad (iOS)

This Artificial Intelligence Camera uses Machine Learning models to classify images real time from your iPhone camera. You don’t need to take a photo, you just point your iPhone camera at any object or scene, and the classification happens instantaneously. I’ve provided five different machine learning models available for iOS, including: GoogLeNet Places (for classifications of scenes), Inceptionv3, VGG16, Resnet50, and SqueezeNet (all trained to classify objects across 1000 categories). In addition to classifying things, it also provides the probability of the classification label given.

This is a simple but very powerful tool that demonstrates how far artificial intelligence and machine learning has come, especially the power of deep neural networks and specifically, convolutional neural networks.These models are all freely available from the internet under the licenses provided by the links below.

GoogLeNetPlaces: Creative Common License. More information available at http://places.csail.mit.edu

Resnet50: MIT License. More information available at https://github.com/fchollet/keras/blob/master/LICENSE

Inceptionv3: MIT License. More information available at https://github.com/fchollet/keras/blob/master/LICENSE

VGG16: Creative Commons Attribution 4.0 International(CC BY 4.0). More information available at https://creativecommons.org/licenses/by/4.0/

SqueezeNet: BSD License. More information available at https://github.com/DeepScale/SqueezeNet/blob/master/LICENSE

Beyond 2020 (Artificial Intelligence)

STANLIB MULTI-MANAGER MINDSET – Q3 2017

BY JOAO FRASCO, CHIEF INVESTMENT OFFICER, STANLIB MULTI-MANAGER

One of my favourite TV shows growing up was an Australian TV show called “Towards 2000”, which later changed to “Beyond 2000” for what I hope are obvious reasons.

The program explored how companies and other institutions (e.g. research labs at universities) were developing technologies at the “bleeding edge” (a play on “leading edge” that is so far on the edge that it is invariably traumatic). Many people may not remember the pain of dialling up to the Internet at a baud rate of 300 kbps and waiting endlessly for a very small graphic to download. Most people probably don’t even remember the internet before the World Wide Web (www) and hypertext transfer protocol (http). While many of the technologies explored in the TV show didn’t make it into our everyday lives, most were surpassed. Many futurists will recognise that technology (or the impact on our environment) is impossible to predict, and the Internet is a great example of this. What’s next on the horizon?

It’s a brave new world

As cliché as this may sound, this time could be very different, perhaps for reasons that are not that obvious. Whenever facing the unknown, it is normal to react with fear and apprehension. Some of the brave in these encounters, live to tell the story, while others perish in the annals of history. Historically though, we’ve at least come to know the “unknown”, even if it took some time to discover. This time however, we may nd ourselves in the “dark” forever.

While most futurists think the “singularity” is a long time off (and some think it will never happen), there are some that think it is around the next corner. The “singularity” (a term hi-jacked from astronomy) refers to the point in time where humans will have developed a piece of technology (deliberately generic) that surpasses

human level general intelligence, creating an intelligence explosion where machines become super intelligent, leaving the human race forever behind.

In this article, I will talk to some of what is happening in tech that is noteworthy (in my opinion), and introduce some of the topics that my fellow colleagues will explore in more detail.

Technology in general

Everyone understands the importance of technology within our personal lives and our economy more generally, but few may appreciate just how big and important it has become. Globally, Apple Inc. became the biggest company in the world (by market capitalisation) a couple of years ago, and recently became the rst company to breach a market cap of $800 billion. Alphabet Inc. (holding company of Google) is not far behind at $682 billion, and is the second biggest company in the world. In case you were wondering, the next three biggest companies are also technology companies, namely Microsoft at $544 billion, Amazon at $476 billion, and Facebook at $442 billion (all numbers at 30 May 2017).

Closer to home, Naspers became the biggest share on the Johannesburg Securities Exchange (JSE) a couple of years ago, and has continued to dominate our market, all on the back of its holding in Tencent (itself in the top 10 largest companies in the world by market cap), another technology company. Many professional money managers are sceptical of technology company valuations, as they often trade on terrible value metrics (like the Price to Earnings (PE) ratio). Some money managers stay away because of the dot.com bubble where spectacular losses were made by companies that failed to monetise their value proposition. Unfortunately, these stocks can no longer be ignored. Warren Buffet (the sage of Omaha and CE of Berkshire Hathaway) and Charlie Munger apologised to investors at their latest AGM for a couple of their technology company blunders, including not investing in Google. They have recently invested in Apple, having stayed away from tech stocks for a long time.

Artificial intelligence

Technology by itself is not new (albeit interesting), as we have lived with tech for many years. What is far more interesting, is how the technology has begun transforming our lives and economy in ways that are different from any other time in history. Here, I’m talking about technology in its broadest sense i.e. the application of scienti c knowledge for practical purposes. We are making tremendous progress across many disciplines, and technology is the key enabler in all of them. I want to focus on arti cial intelligence (AI) generally, and speci cally a branch of AI called machine learning.

Like many technologies that have come before it, machine learning adoption is undergoing massive acceleration because of the intersection of three big “pieces” (the proverbial “perfect storm”). The rst is computing power (both in its magnitude and its cost) on the back of Moore’s law, which shows no sign of slowing down. We have unprecedented access to more computing power at lower costs than ever before. To make this “real”, my desktop PC runs at about 100 GFLOPS (100 000 000 000 oating point operations per second), where the Cray-2 supercomputer (from the 80’s) ran at about 2 GFLOPS (50 times slower for the world’s fastest supercomputer at the time).

The second is “big data”, or access to unprecedented amounts of data (both structured and unstructured). To make this “real”, and I am sure that you will look this up as the numbers are unbelievable, by some estimates, we now produce more data in two days, than we did in the entire history of humanity up until 2003 (and this is an old estimate dating back to 2010). Another estimate

by IBM, has us producing 2.5 quintillion bytes of data (that’s 18 zeros) every day, or 90% of the world’s data was created in the last two years. The Large Hadron Collider in CERN alone, produces about 25 petabytes of data every year (that’s fteen zeros, or 25000 1 terabyte hard drives every year).

The third and nal piece of the puzzle relates to the advances in the state of the art, which includes everything from brain power (the advances that have been made by individuals and groups), to the software that utilises the computing power and data referred to above (speci cally “deep learning” enabled by deep neural networks). A lot of this knowledge and software has been made available to the masses (democratised), allowing individuals and small enterprises to leverage the advances being made. Let’s brie y explore some of the things that this technology has enabled.

Applications of machine learning

Back in 1997, IBM’s supercomputer “Deep Blue” beat the reigning world champion (Gary Kasparov) at Chess by a score of 3.5 – 2.5. While many saw this coming given the progress that had been made over the years, and the limited number of moves in a chess game (albeit a very large number), it was still seen as a major milestone. Most people thought that the same feat would not be achieved for a very long time for the game “Go”, as the number of possibilities in this game is larger than the number of atoms in the universe, making a “brute force” solution impossible (which is essentially how the feat was achieved in chess, with Deep Blue able to calculate many move possibilities before every move). It was therefore a big surprise when AlphaGo (an AI computer program developed by Alphabet’s Google Deepmind) beat 9-dan professional, Lee Sedol, in 2016. More recently, AlphaGo beat the world number one ranked player, Ke Jie. In 2011, IBM Watson (another AI program able to process questions in natural language), beat two former winners of the quiz show “Jeopardy”.

Nowadays, we all have access to AI on our smart phones (Siri on Apple’s iPhone, and Google assistant on various platforms), where we too can pose questions in natural language. This is enabled through two technologies that have made signi cant progress in the last decade, all based on machine learning. The rst is speech recognition, and the second is natural language processing. Again, this has been made possible because of computing power and huge amounts of data. Another application that some of you may have tried, is translation (between languages), which can now be done in “real time” by pointing your smart phone at any written text and seeing the translation in place (using another technology called augmented reality).

At Google’s recent I/O (developer conference) the CEO, Sundar Pichai, announced that Google was changing from a “Mobile-First” company to an “AI-First” company, before introducing a slew of technologies and initiatives in support of this, including support for cloud machine learning using their TPUs (Tensor Processing Units – chips developed speci cally for machine learning).

Some of these applications may appear silly or gimmicky, but there are far more serious applications being developed. Machine learning in image recognition has taken even bigger strides in the last decade and is being used in healthcare for diagnosis. The “killer app” for image recognition from machine learning has to be self-driving cars. Various companies are developing this technology, including Tesla (founded by none other than South African born, Elon Musk). What makes their solution particularly interesting (compared to Google say), is they are achieving this without LIDAR (the equivalent of laser radar – or the spinning cylinder you see on top of Google’s cars). Tesla uses eight video cameras and one radar (and ultrasonic devices), and of course a supercomputer powering the AI.

Investments?

Most of the topics discussed above make news headlines and are therefore known to most people. What most people may however not be aware of, is how AI and machine learning is being used in investing. This is however not something new, although it will have bene tted more recently from the same technologies already discussed. The ash crash of 2009

which resulted from algorithmic trading performed by computers looking to exploit pricing inef ciencies (resulting from information inef ciencies because of their ability to gather trading information on order books on various exchanges before their human counterparts), is very much a part of the AI revolution.

Unlike in other elds already discussed above though, when it comes to investing very little is known about who is doing what, for obvious reasons (why tell the world about how you are exploiting technology to make excess returns, or worse still, share the technology and knowledge). So why does this interest us, and why should it interest you? Let’s explore a couple of the main reasons.

The rst reason, is that we need to understand the world we live in, and the markets and companies that compete (do business) in that world. We need to understand the opportunities for investing, so that we invest in companies that not only provide great short-term returns, but will also survive longer- term and hence keep generating positive returns. If we understand the themes and transformative (or disruptive) power of technologies, we may be able to identify themes for longer term investing. We are entrusted by our clients to do all of this on their behalf, and cannot shirk the responsibility by simply passing the money to our underlying managers.

This leads us to the second reason. If we allocate capital (our clients’ hard earned money) to these markets through asset managers, we need to ensure that our managers also understand this world. It is pointless to allocate the money to people that don’t understand technology and therefore will never invest in technology companies (famous words from Warren Buffet). Some managers don’t invest in growth companies as they believe that they are invariably over- valued, again possibly missing great opportunities. We need to be able to assess whether managers have the skills and knowledge to exploit as many opportunities as possible as they arise, and not merely invest in “old world” companies.

The third and nal reason, is that we may ourselves be able to leverage these technologies in the work we do. We design and build solutions for many different clients, and machine learning may assist us with many parts of our investment process (from design to asset allocation, and from manager selection to portfolio construction). It is often the jobs / professions that we think are most secure from being automated by intelligent agents that will be the rst to go in the AI revolution. We are looking at all of these and many more applications (including robo tools powered by machine learning for advisers) to understand whether there are opportunities to meet tomorrow’s demands utilising these and other new technologies.

Conclusion

I think this is an exciting time to be alive and working in investments, but also believe that these technological disruptions will be very painful for many people and businesses. Despite these disruptions, we attempt to

have our eyes focussed on the horizon, with our feet rmly planted on the ground beneath us, thus ensuring that we make great investment decisions today for our clients for many years to come.

Technology broadly is changing our world, and AI/ machine learning is leading the charge. We can either embrace it with both arms or risk getting left behind.

In the articles in this edition, we will explore the topic of technology in investments in more detail by digging a little deeper into some of the things discussed above. In the accompanying podcast, I’ll go further down the “rabbit hole” and discuss the world of AI and machine learning in more detail, and how companies like Apple, Google and Facebook are investing heavily in these technologies in an attempt to capture the “hearts and minds” of their huge client / “follower” base.

I hope you enjoy and learn something new.

Understanding Goal-Based Investing (Financial Planning)

STANLIB MULTI-MANAGER MINDSET – Q2 2017

BY JOAO FRASCO, CHIEF INVESTMENT OFFICER, STANLIB MULTI-MANAGER

It is important to understand that we are only talking about the investment side of meeting goals here, and that financial planning is a much broader topic that will directly impinge on the ability to meet a specific goal if not directly addressed.

Let’s use a simple example to clarify

Imagine that a client identifies their goal as an income in retirement, and after careful consideration you establish that the income required is Rx per month after tax. If this client has not provided adequately for medical expenses in retirement (hopefully with medical insurance cover or medical aid), the income may be wholly inadequate if the client is faced with a major medical procedure. Financial advice can’t consider meeting goals with appropriate investments in isolation, but must cover all other aspects of financial needs, like appropriate insurance cover.

It is also important to note that in most cases, we will be dealing with constraints that make meeting financial goals less than certain. It would be wonderful if assets existed to meet all conceivable goals, but the reality is far from this. The best we can hope for is for some assets that meet some of the dimensions of goals (liabilities) that we want to achieve, but even this can be rare and often it is also very expensive. Let’s consider another simple example.

Imagine that an individual would like to save to buy a retirement home in the south of Portugal (the majestic Algarve) in 20 years’ time when they are planning on retiring. Portuguese inflation-linked bonds may seem like a good bet, but there are a couple of problems. Firstly, the Portuguese government does not issue inflation-linked bonds.

Secondly, even if they did exist (hypothetically), they may not have a maturity of 20 years, which would introduce either reinvestment risk (if maturity was less than 20 years) when they matured (and which will nevertheless exist on any coupon payments even if the maturity was 20 years), or market risk if the bonds would need to be sold before maturity (if maturity was substantially longer than 20 years). For clarity, market risk is the risk that the yield to maturity of the bond changes throughout its life (because of many factors that could affect the yield at different durations). The returns on bonds is therefore only somewhat known if they are held to maturity without default.

Thirdly, the Portuguese government could default on the (hypothetical) bonds before expiry, and the European Central Bank (ECB) may not provide any security on this default, in which case some of the capital invested would be lost (hopefully not all of it, although for governments this is a real possibility as bonds are not secured by assets).

Finally, and this is very important, house prices in the Algarve may not increase at the same rate as Portuguese inflation overall (which like all other country inflation is actually made up of a basket of goods consumed by an average household). In fact, given the demand for the majestic coast, house price inflation in the Algarve could be much higher. Clearly what started out as a simple goal, is actually not that simple and in actual fact can be very complex.

To explain goal-based investing, I will begin by describing the objectives of goal-based investing, and the theoretically optimal solutions used to achieve these objectives, before introducing various constraints that will lead into the final proposal. The reason for tackling the topic thus, is to demonstrate the complexities that exist, so that the final solutions are not misunderstood as being simplistic, but rather as practical. It does however also aid with the understanding of the complexity that exists and that will remain within the final solutions in resolving financial goals.

Understanding goals

It is generally well understood that goals can differ substantially along many different and important dimensions. Let’s begin by exploring these to understand the complexity that this creates. A goal can be of a capital nature (a single payment at some future date), or of an income nature (a couple of, or even many, payments at various future dates). They could be in one of many possible currencies (e.g. rand, dollar, or euro). They could be nominal amounts i.e. fixed amounts whose value is known today, or real amounts i.e. an amount linked to inflation (not only consumer price inflation, but any possible measure of inflation, say medical inflation). The future date/s could be in the near future (say next year), or very far into the future (say 80 years hence for a 20 year old starting their career and wishing to save for retirement and an income for when they are a centennial). The amounts required (capital or income) could be gross or net of tax. Finally, any of the above dimensions could be known with certainty, or completely uncertain e.g. how long will I live and need an income for? Do I know what education inflation will be and how it will relate to consumer price inflation? Do I know what future tax rates will be? Do I know what the price of a life annuity (with an insurance company providing longevity risk cover) will be? And so the list goes on.

It is important to distinguish between the dimensions of the goal(s) listed above, and the investor preferences associated with the goals, and priorities. Different investors may give different goals different priorities, and it is important to understand and respect these when considering how to construct solutions to meet them. When certainty of meeting the specified goal is given the highest weighting (highest priority), the “best” solution will focus on minimising the risk of not meeting the goal. This solution is unlikely to be the same solution as when another dimension is given a higher priority e.g. maximising wealth or returns.

It is however appropriate to understand that the starting point to investing to meet a goal, is to find assets that best match the nature of the goals, as any deviation away from this introduces variability (uncertainty) in the outcomes. It is important to highlight that even the “optimal” solution would not be “risk-free” as uncertainty of meeting a specific goal could never be guaranteed (except in the simplest of cases). We’ll touch on this in more detail below in the section on funding goals, but it should already be evident from the examples given in the introduction above.

The above complexity and conflicting objectives pose a serious problem which is not trivial to solve. To meet the various goals of various investors, you would need a large number of solutions to meet all of the different dimensions and requirements. While enough solutions probably exist globally to get you to a good answer for each goal, you would potentially need to know about and monitor hundreds or even thousands of these solutions. This is clearly untenable, which is why we begin by simplifying the dimensions so that we end up with a manageable set of solutions that will approximately match the dimensions of most goals.

Funding goals

Given the above as a starting point, how can we proceed? There are generally two approaches.

The first approach, which relates back to the theoretically “optimal” solution, would be to model the investments (every asset class available for investing i.e. not just theoretically available) and the goals (liabilities) stochastically i.e. randomly (introducing their “known” uncertainty). We won’t go into the detail here around the modelling methodology, but it is important to know that modelling requires assumptions which are informed by historical data (or at least should be, and hence why I refer to it as “known”).

This means that the modelling considers all of the uncertainty around returns and correlations between asset classes, as well as the uncertainty of the liabilities and how they may change or evolve (and the correlation between the assets and the liabilities). The optimal solution to the problem is the investment (combinations of asset classes) that provides the best match to the liabilities (goal) i.e. the solution that minimises the uncertainty around meeting the goal, regardless of the cost. Investor preferences can then be factored into alternative solutions that deviate away from this based on other priorities.

The second approach, focuses on the traditional requirement for a discount rate to be used to equate the present value of the investments and goals (assets and liabilities), and does this deterministically i.e. not randomly. It is however important to note that even here stochastic modelling is used for the assets, but this is used to establish the expected risk of the assets and how to combine these efficiently (using a mean variance framework with expected return assumptions).

Mean-variance optimisation

Practically, this means building an “efficient frontier” i.e. a combination of assets that minimise variability (or variance/standard deviation) of returns for a given level of expected return. We actually do this in real return “space” (an abstract construct that looks at returns and variability in real terms i.e. after adjusting for inflation). This is straightforward when working in rand (because we can use SA CPI for inflation), but creates additional complexity when considering global goals and investments (which currency and inflation rate should be used?).

It should be obvious from the second approach, that you need a discount rate to equate assets (investments) and liabilities (goals). This creates the need for target returns in the solutions i.e. there is no alternative way (except for the first approach) to translate the goals into specific investment objectives.

Up to this point, things should be fairly clear. We’ve constructed an efficient frontier that provides us with the combination of assets to be used for a given level of risk or return (real). It is important to appreciate the sensitivity of the results obtained, to the assumptions made (and methodology adopted), so that we don’t get too comfortable with the “preciseness” of the numbers i.e. it would be wrong to think of this efficient frontier as being “certain” in any meaningful way as one of the dimensions actually represents uncertainty (risk).

The portfolios on the efficient frontier will then have a corresponding asset allocation to the asset classes used in the modelling, and this is used as the strategic asset allocation (SAA) for the corresponding solution. All that is left to do, is decide on how many solutions are needed, and exactly where along the frontier should these be selected from, and we will consider this next.

Mean-variance optimisation may appear dated, but it remains a useful and powerful tool in understanding how to build portfolios under certain assumptions. It can incorporate Monte Carlo simulations using historical data, or parametric distributions based on historical data. It can incorporate historical or expected returns, and can even incorporate stochastic covariances (correlations) between the various asset classes i.e. uncertainty can be introduced into the various dimensions of interest.

Building solutions

So how do we move from the optimisation work, and the resultant possible solutions, to a range of portfolios to meet a varied range of individual goals? One obvious extreme method would be to include just one portfolio (somewhere on the frontier), and force everyone to use this portfolio for every goal.

Clearly this is not very client-centric, and appears to be a little too extreme in terms of simplification. Another less obvious extreme may be to have many portfolios (say 50) all along the frontier, hoping to provide a lot of granularity in meeting various risk and return requirements. We hope that it is obvious that this is not practical or necessary, and actually highlights a lack of understanding of the uncertainty present in modelling and dependence on the assumptions.

So, having thrown out the extremes, we can focus on finding a suitable compromise, but let’s consider the compromise I’m discussing in more detail first. Too many portfolios are extremely costly to manage (on various cost dimensions, including indirect costs related to governance), and we therefore want to minimise the number of portfolios to minimise these costs, costs which will need to be passed on to clients. Too few portfolios on the other hand, don’t provide enough granularity in terms of meeting different risk and return requirements. This is what we will need to balance, and find a reasonable compromise around.

On the lower limit, we could build just two portfolios (100% local cash, and say 100% local equities), and every client could be given a combination of these two to meet their specific requirements. It is important to understand the limitations of this possible solution. The first, is that it is sub-optimal in a mean-variance sense (i.e. the combination will not lie on the efficient frontier except for the two extreme cases) because it doesn’t make use of all available asset classes, which provide diversification benefits. The second, is that it could be sub-optimal from a tax and cost perspective because it would require constant rebalancing to maintain a fairly constant allocation to cash and equities.

If we consider 1% real return increments from 1% for local cash to 7% for equities (approximately our long-term real expected return assumptions), we could end up with five multi-asset class portfolios ranging from 2% to 6%, giving us a good range of portfolios to meet most investors’ risk and return requirements (in addition to cash and equities at the two extremes for investors looking for something more). Some people may argue for even greater granularity (i.e. more portfolios at say 0.5% increments), but the above proposal already introduces spurious accuracy i.e. there is already so much uncertainty around what each portfolio will deliver over various time frames.

It is important to understand that there is no “correct” or “optimal” number of portfolios, or where they should be positioned on the efficient frontier. If we are given a specific utility function that captures the client’s preference with reference to competing constraints, it is fairly simple to point to an optimal solution, but generally this is derived through a conversation with clients around the priority of the competing objectives and constraints. To suggest otherwise demonstrates a lack of understanding, and is simply misleading.

Mapping goals to solutions and understanding the limitations

Now that you have a range of portfolios along the dimensions of expected risk and return, you need to decide on which portfolio to use to meet each specific goal. I will deliberately sidestep the issue of whether investments should be considered separately for each individual goal (as opposed to collectively which is actually more optimal) as this remains a contentious issue and difficult for many to grasp.

This is where the traditional approach of “risk-profiling” investors enters the advice framework, although I think this will ultimately evolve away from this (another contentious issue I will avoid in this article). The traditional approach considers three dimensions of risk, which includes risk capacity, risk required and risk tolerance (the dimension where psychological questionnaires are used to establish attitude to and appetite for risk).

It is critical for the investor to understand risk as uncertainty at this point, as many investors may believe that this approach to investing for meeting goals removes all uncertainty, where nothing could be further from the truth. The methodology actually enables a discussion around the dimensions of goals and investments, and their attendant uncertainties, so that an appreciation of the complexity can be reached. Financial advisers will be doing their clients a great disservice if they don’t use the opportunity to have this discussion upfront as they may learn later when their clients become disgruntled by “poor” performance.

This is where the use of great tools/aids can assist financial advisers and their clients in understanding these dimensions and risks, and graphical representations of the evolution of the investment and the goal can be very enlightening. Scenario analysis and hypotheticals are two more great tools to help in this mammoth task e.g. showing how the investment would have performed through the global financial crisis (GFC). If a client is uncomfortable with the level of drawdown through the GFC, they should seriously consider lower risk portfolios as this scenario could easily repeat in the lifetime of the goal.

A tool that allows an adviser to flex (change) various dimensions associated with the investor, their goal, and possible solutions, is extremely powerful in trying to find a suitable investment to meet an investor’s very specific requirements. The investor should be able to see (visually as well as understand) the impact of changing the investment or consumption horizon, the initial and ongoing investment contributions (if any), the expected risk and return assumptions, and the certainty (probability of achieving the goal), on the goal value. The investor should then be able to change the question around to ask what the impact would be on any of those same dimensions, if the goal value were changed e.g. if the investor wants a higher amount at retirement, how much longer should the investor work before retiring?

Evaluating performance and ongoing investment advice

Once all of the above has been adequately covered, with the investor demonstrating a good understanding of the methodology and how it will assist in meeting their specific goals, a record of advice can be produced for both the investor and the financial adviser. It is critical that this record includes the uncertainty discussed as this is one of the most important dimensions of the exercise and will represent the most discussed issue in the annual review of how the investment is tracking against the goal. It would be simple if the trajectory of the investment progressed smoothly along the expected return path, but this is not only unlikely, but actually practically impossible.

At each review, the financial adviser can therefore consider how far above or below the trajectory the investment is progressing, and whether any corrective action should be taken. There are many things to consider in this process, so I will not be tackling them here, but it again represents a wonderful opportunity for adviser and investor to have a discussion around the initial process and their shared understanding of how the investment would evolve. By spending adequate time doing this, it should prevent any short-term irrational decisions that could be detrimental to the long-term success of meeting goals, which was the initial intention of following this methodology.

Conclusion

It is important to recognise what goal-based investing aims to achieve, and the idealised solutions that would theoretically be employed to meet them. It is equally important to understand the practical considerations that are needed when arriving at real world solutions, and the limitations and compromises that have been made to arrive at these. It is then fairly easy to understand why the solutions look the way they do, and how that can be integrated into an advanced financial advice framework. Without this understanding, it is easy to criticise the solutions as simplistic, and advisers should be aware of this, so that they can defend the methodology and approach to their clients.

I have taken care to articulate these complexities and discuss appropriate ways of addressing them before presenting a solid foundation for the methodology and recommendations made. I would urge all stakeholders to put sufficient emphasis on this understanding, before embarking on this methodology of investing to meet goals. I think that clients want to see consistent and integrated thinking and advice, and goal-based investing is well positioned to provide it, but requires a deep understanding of the complexity and the time to get the client to a good level of understanding.

The time invested upfront will be worth it as the adviser meets with clients annually along the journey, comparing how the investments are tracking relative to the goals. This presents a wonderful opportunity to stop the “short-termism” prevalent in the industry as investors chase the best past performers according to some survey or peer group ranking tables, in the belief that past performance may in fact be a good guide to future performance, despite all the “health” hazards communicated around this.

It is important to recognise what goal-based investing aims to achieve, and the idealised solutions that would theoretically be employed to meet them. It is equally important to understand the practical considerations that are needed when arriving at real world solutions, and the limitations and compromises that have been made to arrive at these.